MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2010	4024	12

Abbreviations

- cao correct answer only
- cso correct solution only
- dep dependent
- ft follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- www without wrong working
- art anything rounding to
- soi seen or implied

1	(a)	17	1	
1	(a)	$\frac{17}{21}$ oe	1	
	(b)	$\frac{5}{12}$ cao	1	
2	(a)	70	1	
	(b)	4.05	1	
3	(a)	7.06×10^{-5} cao	1	
	(b)	150	1	
4	(a)	7	1	
	(b)	6	1	
5	(a)	1.65	1	
	(b)	2:25	1	
6	(a)	(2t-3)(2t+3)	1	
	(b)	(3x-1)(x+2)	1	
7	18		2	or B1 for "k" = 2, or for $\frac{y}{50} = \frac{3^2}{5^2}$ oe
8	(±)	$\frac{y-3}{2}$ oe e.g. (±) $\left(\frac{y-3}{2}\right)^{\frac{1}{2}}$	2	or C1 for $\frac{\sqrt{y-3}}{2}$ or for $\sqrt{\frac{y+3}{2}}$
	(sq. 1 line)	root symbol must extend below the fraction		or for $\sqrt{\frac{3-y}{2}}$ or for $\sqrt{y-3/2}$
		(1) 5	1	oe for all
9	(a)	(±) 5 cao	1	
	(b)	(i) 6 (ii) (1.5, 0)	1 1	
		(1) (1.3, 0)	1	

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2010	4024	12

(a)	$\frac{4}{5}$, or 0.8, only	1	
(b)	$25x^6$ cao	1	
(c)	$\frac{4}{n^8}$	1	
(a)	8	1	
(b)	{5, 6, 7, 8, 9}	1	
(c)	$\frac{3}{10}$ or 0.3	1	
(a)	$3\frac{1}{2}$, or $\frac{7}{2}$, or 3.5, only	1	
(b)	12 - 2x or any equivalent	2	or C1 for $12 - 2$ "y" or any equivalent or C1 for $6 - 2x$, or for any incorrect linear combination of 12 and $2x$ (but not 2"y")
(a)	Irrational	1	
(b)	$(AB^{2} =) AC^{2} - 5^{2}$ or $(AB =) \sqrt{AC^{2} - 5^{2}}$ or $AC^{2} = AB^{2} + 5^{2}$. AC must be "their"	M1	
		A1	
<i>x</i> = 9		3	or C2 for one answer correct; or C1 for a pair of values that fits either equation, provided that this pair has been obtained by the method of substitution, equal coeffs., or matrices/determinants and not by trial and error.
(a)	16 (.0)(0)	1	
(b)	75 (.0)(0) www	2	or M1 for $\frac{60}{0.8}$ oe, e.g. $\frac{3k \times 100}{4k}$
(a)	$\begin{pmatrix} -1 & -2 \\ 0 & -2 \end{pmatrix}$	1	
(b)	$\begin{pmatrix} 0 & -1 \\ -\frac{1}{3} & -\frac{2}{3} \end{pmatrix} \text{ or e.g. } -\frac{1}{3} \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$	2	or B1 for det $\mathbf{A} = -3$ or for $k \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$ or for $-\frac{1}{3} \begin{pmatrix} \cdots \\ \cdots \\ \cdots \end{pmatrix}$
(a)	$ \begin{pmatrix} 490 \\ 520 \end{pmatrix} $	2	or C1 for a 2×1 matrix with one element correct; or for (490 520)
(b)	The cost, (in cents), of each bunch. oe	1	Indep. of (a)
(a)	14.7(0) cao	1	
• •			
	(b) (c) (a) (b) (c) (a) (b) x = 9 (a) (b) (a) (b) (a) (b) (a) (b)	(b) $25x^{6}$ cao (c) $\frac{4}{n^{8}}$ (a) 8 (b) $\{5, 6, 7, 8, 9\}$ (c) $\frac{3}{10}$ or 0.3 (a) $3\frac{1}{2}$, or $\frac{7}{2}$, or 3.5, only (b) $12 - 2x$ or any equivalent (a) Irrational (b) $(AB^{2} =) AC^{2} - 5^{2}$ or $(AB =) \sqrt{AC^{2} - 5^{2}}$ or $AC^{2} = AB^{2} + 5^{2}$. AC must be "their" $\sqrt{89}$ (±) 8 x = 9, y = 6 both (a) $16 (.0)(0)$ (b) $75 (.0)(0)$ www (a) $\begin{pmatrix} -1 & -2 \\ 0 & -2 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & -1 \\ -\frac{1}{3} & -\frac{2}{3} \end{pmatrix}$ oe e.g. $-\frac{1}{3} \begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$ (a) $\begin{pmatrix} 490 \\ 520 \end{pmatrix}$ (b) The cost, (in cents), of each bunch. oe	(b) $25x^{6}$ cao (c) $\frac{4}{n^{8}}$ 1 (a) 8 1 (b) $\{5, 6, 7, 8, 9\}$ 1 (c) $\frac{3}{10}$ or 0.3 1 (a) $3\frac{1}{2}$, or $\frac{7}{2}$, or 3.5, only 1 (b) $12 - 2x$ or any equivalent 2 (a) Irrational 1 (b) $(AB^{2} =) AC^{2} - 5^{2}$ or $(AB =) \sqrt{AC^{2} - 5^{2}}$ M1 $(AB^{2} =) AC^{2} - 5^{2}$ or $(AB =) \sqrt{AC^{2} - 5^{2}}$ M1 (x = 9, y = 6 both 3 (a) $16 (.0)(0)$ 1 (b) $75 (.0)(0)$ www 2 (a) $\begin{pmatrix} -1 & -2\\ 0 & -2 \end{pmatrix}$ 1 (b) $\begin{pmatrix} 0 & -1\\ -\frac{1}{3} & -\frac{2}{3} \end{pmatrix}$ oe e.g. $-\frac{1}{3} \begin{pmatrix} 0 & 3\\ 1 & 2 \end{pmatrix}$ 2 (a) $\begin{pmatrix} 490\\ 520 \end{pmatrix}$ 2 (b) The cost, (in cents), of each bunch. oe 1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – October/November 2010	4024	12

19	(a)	p=1, q=0	1	
	(b)	(i) $\frac{5}{7}$	1	
		(ii) $\frac{2}{7}$ or ft 1 – their (i)	1ft	ft depends on $0 < Ans. < 1$
		or ft $(\frac{1}{7} + \frac{1}{7} \times \text{their } p)$		
20	(a)	3x > 7 oe 4x + 4y < 35 oe	1 1	or C1 for $3x \dots 7$ and $4x + 4y \dots 35$ (oe) with incorrect inequalities for \dots .
	(b)	(5, 3)	1	
21	(a)	53.35°	1	
	(b)	65.15°	2	or C1 for 64.65; or 65.1; or 64.05
22	(a)	(i) 16 000 cao(ii) 0.0030 cao	1 1	
	(b)	50 cao	2	Give 0 for multiplication using either original number. or C1 for figs. 5, or 6; or 45; or 48
23	(a)	123°	1	
	(b)	57°	1	
	(c)	33°	1	
	(d)	66°	1	
24	(a)	$3\mathbf{p} + \mathbf{q}$ oe	1	
	(b)	(i) Trapezium (ii) $\mathbf{p} + k\mathbf{q}$ oe	1 1	
		(iii) $\frac{1}{3}$	1	
25	(a)	30	2	or B1 for $10u$ or $\frac{1}{2} \times 20 \times u$ clearly seen
	(b)	90	2	or C1 for 30 (if as the further time from 60) or M1 for
				$100 - \frac{1}{4} \times 40$, or for $60 + \frac{3}{4} \times 40$
26	(a)	$-\frac{4}{5}$, or -0.8, only	1	
	(b)	16	3	or M1 for $\frac{AC}{\sin b} = \frac{10}{\sin a}$ soi
				and M1 for $AC = \frac{10 \times \frac{24}{25}}{\frac{3}{5}}$ oe

	Page 5		Mark Scheme: Teachers' version		Syllabus	Paper	
			GCE O LEVEL – October/N	O LEVEL – October/November 2010		4024	12
27	(a)	3		1			
	(b)	80		1			
	(c)	$7\frac{1}{2}$ oe		3		$\times 2 \times \pi \times r$ with λ	
					and $\pi = \pi$ or 3	or 3.14 or $\frac{22}{7}$ etc	
						ding the appropria	
						(s) and equating t re length (60 or 20	
						.g. $\frac{8}{3}r = 20$), gets	